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Abstract
We study theoretically the plasmon mediated propagation of light through a
chain of metallic nanoparticles along which a small chain (called a resonator) is
attached vertically. The effect of this vertical resonator is to induce peaks and
zeros in the transmission power. We show that, with a resonator constituted of
two metallic clusters, an appropriate choice of the geometrical parameters can
lead to a narrow peak in the transmission spectrum. This may be realized for
this device by adjusting the distances between the two resonator clusters and the
chain cluster to which they are attached. This enables us to get, in particular, a
sharp peak between two zeros of transmission close to each other or sharp dips
between two transmission ones. Such a device can be useful as a selecting or
rejecting plasmon filter.

In recent years, significant progress has been made towards reducing the size of optical
devices. This trend towards miniaturization is driven by the increase in system functionality and
reduction in power dissipation that may be achieved when highly integrated photonic networks
replace today’s discrete devices and stand-alone modules. Another important motivation is
a vision of an architecture in which photonic circuits integrate seamlessly into large-scale
electronic systems. This requires waveguides that bridge the gap in size between conventional
micron-scale integrated photonics and nanoscale electronics. Additionally, nanostructured
materials often possess strong nonlinear properties that can be exploited in the development
of novel active devices, since the confinement of light to small volumes can lead to nonlinear
optical effects even with modest input power.

In purely dielectric materials, the optical diffraction limit places a lower bound on the
transverse dimension of waveguide modes at about λ0/2n—i.e. several hundreds of nanometres
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Figure 1. Sketch of the geometry of the
nanometric device considered. It consists
of one metallic cluster chain and two other
clusters. The distances between these clusters
are, respectively, d, d1 and d2, as indicated in
the figure. Each cluster is modeled by a point
dipole characterized by an angular frequency
ω0.

for visible light [1]. Plasmonic waveguides, on the other hand, employ the localization of
electromagnetic fields near metal surfaces to confine and guide light in regions much smaller
than the free-space wavelength, and can effectively overcome the diffraction limit.

In plasmonic systems there is generally a trade-off between the size of the electromagnetic
mode and loss in the metallic structures. With this design principle in mind, there
are several choices for plasmonic waveguiding technologies which may prove useful for
various applications. For example, thin metal stripes support long-range surface plasmon
polaritons with an attenuation length as long as millimetres, but lack subwavelength mode
confinement [2, 3]. Another geometry is metallic nanowires, which indeed can provide
lateral confinement of the mode below the optical diffraction limit. Nanowires have larger
attenuation than planar films, but light transport over a distance of several microns has been
demonstrated [4]. Finally, metal nanoparticles are used to achieve three-dimensional (3D)
subwavelength confinement of optical-frequency electromagnetic fields in resonant ‘particle
plasmon’ modes [5]. Nanoparticles provide highly enhanced local fields which are promising
for molecular sensors [6, 7] or miniature nonlinear optical elements [8]. Due to the near-field
interaction of surface plasmon–polariton modes of adjacent particles, an array of such particles
can act as waveguides over modest distances [9]. Indeed, linear chains of metal nanoparticles
have been shown to support coherent energy propagation over a distance of hundreds of
nanometres [10, 11]. The minimum length scales in fabricated structures were determined
by the resolution of electron-beam lithography, with particle diameters of 30 × 30 × 90 nm3

and interparticle spacings of 50 nm [10].
In this paper, we consider such a linear chain of metallic nanoparticles and study the effect

on the transmission spectrum of two additional clusters coupled to one single cluster of the
chain, as depicted in figure 1. The effect of coupling the infinite wire to a local resonator is to
induce peaks and dips (or zeros) in the transmission coefficient. The main purpose of this paper
is to discuss the possibility of a narrow peak in the transmission by selecting appropriately
the geometrical parameters of the problem. This enables us to get, in particular, a sharp peak
between two zeros of transmission close to each other, for a simple two-lead device. Let us
stress that such results were not obtained [12] for a similar two-lead device with continuous
wires and resonators, for which only large dips were reported. Sharp peaks have been found
before [12], but only for a more complicated four-lead device, namely a multiplexer. As shown
in figure 1, we call d the distance between two clusters in the infinite chain, d1 the distance
between the adsorbed cluster molecule and the wire, and d2 the distance between the two
clusters in the resonator.

The problem is treated in the framework of a simple analytical model where each cluster
is considered as a point dipole characterized by its angular frequency ω0. We describe the
interactions between the clusters by a quasi-static approach, with retardation neglected. In this
quasi-static limit, the Forster field ω2

1 (used by Brongersma et al [13]) between two clusters is
inversely proportional to the third power of the cluster separation, provided that the separation
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is kept small compared to the wavelength λ. The radiation field, proportional to the inverse of
the distance, dominates for large distances compared to the wavelength and is neglected here,
as well as the losses due to the curvatures of the clusters and of the wires. The validity of the
ω2

1 dependence with cluster separation has been discussed by Maier et al [14] for greater values
of the cluster separation compared to the wavelength, using a finite difference time domain
(FDTD) calculation. In our simple model, we take into account the coupling only between
the nearest-neighbour clusters. Of course, the above assumptions are the simplest possible
approximations.

One can calculate the plasmon–polariton dispersion relation ω(k) for energy propagation
along the nanoparticle chain waveguide by modelling the chain as a one-dimensional system
of coupled damped harmonic dipole–dipole oscillators spaced a distance d � λ apart. Each
point-dipole m is attributed with the dipole moment pm polarized perpendicular (transverse
polarization) to the chain axis.

Taking the electromagnetic near-field between adjacent point-dipoles of transverse
polarization into account, the equation governing the evolution of the dipoles in an infinite
chain can be written as [13]

d2 pm

dt2
= −ω2

0 pm − �l
dpm

dt
+ �R

ω2
0

d3 pm

dt3
− ω2

1(pm−1 + pm+1). (1)

This equation consists of four terms. The plasmon dipole resonance is described by a
harmonic oscillator term at frequency ω0. The value of the frequency ω0 depends on the
geometrical parameters and the nature of the cluster [15]. The second term and third term model
the damping of plasmon waves along the chain. The damping constant �l is the electronic
relaxation frequency due to interactions with phonons, electrons, lattice defects and impurities,
and the damping constant �R is the relaxation frequency due to radiation to the far field [16].
For Ag and Au nanoparticles in the point-dipole limits, (�R � �l ) holds, so the radiating
oscillator damping term can be neglected [13]. The fourth term incorporates the electrodynamic
interaction with the nearest-neighbour dipoles at m − 1 and m + 1. This term is responsible for
the existence of propagating solutions. The coupling strength is determined by the value of ω2

1,
which is given by

ω2
1 = qe

4πm∗ε0n2d3
, (2)

where q is the magnitude of the oscillating charge, n is the refractive index of the host material,
ε0 is the free-space permittivity, m∗ is the effective electron mass, and e is the electron charge.

Propagating wave solutions to equation (1) are of the form

pm = p0 exp[i(ωt − k̃md)], (3)

where

k̃ = k − iα (4)

is the complex wavevector and p0 is the dipole moment at m = 0. The damping of the plasmon
wave per unit length is given by the attenuation coefficient α. The angular frequency and the
wavevector of the chain plasmon wave are given by ω and k = 2π/λ, respectively. Substituting
equation (3) into equation (1), one obtains

ω2 − i�lω − ω2
0 = ω2

1(e
ik̃d + e−ik̃d). (5)

In order to give complex wavevector k̃ as a function of ω, one can remark that equation (5)
is a second-order equation when considering eik̃d as the variable. Therefore, this last equation
admits as solutions

e±ik̃d = ω2 − ω2
0

2ω2
1

− i
�lω

2ω2
1

±
[(

ω2 − ω2
0

2ω2
1

− i
�lω

2ω2
1

)2

− 1

]1/2

. (6)
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Equation (5) also provides two equations for the real and imaginary parts:

ω2(k) = ω2
0 + 2ω2

1 cos(kd) cosh(αd) (7)

and

ω�l + 2ω2
1 sin(kd) sinh(αd) = 0. (8)

Equation (7) is the dispersion relation for the plasmon–polariton waves. The element
between cluster sites m and m ′ of the Green’s function associated with such an infinite linear
chain is well known to be [12]

G(m, m ′) = ieik̃a|m−m′ |

2ω2
1 sin(k̃a)

. (9)

One considers a one-dimensional system formed out of a finite chain grafted on an infinite
plasmonic chain (see figure 1). In order to calculate the transmitted and reflected wavefunctions
using the Green’s function method [12], we construct this system with an infinite chain and a
finite chain constructed of two clusters 1 and 2. These two blocks are coupled at their ends. The
two clusters 1 and 2 are characterized by their angular frequencies ω2

01 and ω2
02. For the infinite

chain and for the finite chain, the interface domain correspond to sites m, 1 and 2, respectively.
The inverse Green’s functions G−1

1 (m, m) for the infinite chain and g−1
2 (M, M), M =

[1, 2], for the grafted finite chain are given by:

G−1
1 (m, m) = −2iω2

1 sin(k̃a) (10)

and

g−1
2 (M, M) =

(
ω2 − ω2

01 −ω2
12−ω2

12 ω2 − ω2
02

)
(11)

where ω2
12 represent the coupling term between the clusters 1 and 2.

Superposing these different contributions, one deduces [12] that the inverse interface
Green’s function of the composite system is

g−1(M, M) =
(−2iω2

1 sin(k̃a) −ω2
1′ 0

−ω2
1′ ω2 − ω2

01 −ω2
12

0 −ω2
12 ω2 − ω2

02

)
(12)

where M = [m, 1, 2] and ω2
1′ represent the coupling term between the clusters m and 1.

In general, any incident wave, coming from m = −∞, of amplitude unity launched
onto the structure generates, as a result of scattering processes, the transmitted and reflected
wavefunctions t and r which, with a Green’s function method [12], are easily found to be

t = g(m, m)

G(m, m)
= −2iω2

1 sin(k̃a)g(m, m) = 1

1 − iY1
, (13)

and

r = t − 1, (14)

where

Y1 =
(

d

d1

)6 cot(k̃d)

4 cos2(k̃d) − (d/d2)
6
. (15)

Inserting equation (6) into (13), we arrive at the following equation of the transmission
coefficient as a function of the frequency: ω

T = |t|2 =

∣∣∣∣∣∣∣∣
1

1 − i
(

d
d1

)6
Y2√

1−Y 2
2 [4Y 2

2 −(d/d2)6]

∣∣∣∣∣∣∣∣

2

(16)
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where

Y2 = ω2 − ω2
0

2ω2
1

− i
�lω

2ω2
1

(17)

and the reflection coefficient is

R =

∣∣∣∣∣∣∣1 − 1

1 − i
(

d
d1

)6 Y2√
1−Y 2

2 [4Y 2
2 −(d/d2)

6]

∣∣∣∣∣∣∣
2

. (18)

Let us remind ourselves that these coefficients are functions of the frequency ω and the
geometrical distances d , d1 and d2. Equations (13) and (14) enable us to see that the intensity
of the transferred signal T is 1 and that of the reflected signal R is 0, for k1d = π/2. Let us
define the quality factor associated with the line-width of the intensity of the transferred signal
T for this peak by

Q(k1d) = k1d

�(k1d)
, (19)

where �(k1d) is the width of this signal for T (kd) = 0.5.
In order to get from equation (19) an approximate value of this quality factor for the peak

situated at k1d = π/2, one obtains first from equation (13) the value of �(k1d) for which
T = 1/2. For d/d2 � 1, one obtains

Q(k1d) = π

4

(
d2

d1

)6

. (20)

Equation (13) shows also that the intensity of the transferred signal T is 0 when
k0d = arccos

[
1
2

(
d
d2

)3]
has real solutions. When that happens, it is also possible to find an

approximative value for the quality factor of these dips. One first derives the value of �(k1d)

(for which T = 1/2) supposed to be small compared to the value of k1d where one has the dip.
Then one uses equation (19) and obtains

Q(k0d) = 4

(
d1

d

)6
[

1 −
(

d

d2

)6
]

arccos

[
1

2

(
d

d2

)3
]

. (21)

Let us also consider the value of the attenuation coefficient per unit length α. In order to
evaluate αd we use equations (7) and (8). One may then eliminate the kd unknown by using
sin2(kd) + cos2(kd) = 1 in order to obtain

cosh(2αd) =
(

ω2 − ω2
0

2ω2
1

)2

+
(

�lω

2ω2
1

)2

+
√√√√((

ω2 − ω2
0

2ω2
1

)2

+
(

�lω

2ω2
1

)2
)2

− 2

(
ω2 − ω2

0

2ω2
1

)2

+ 2

(
�lω

2ω2
1

)2

+ 1. (22)

In what follows, we illustrate the above results for Ag nanoparticles having a diameter
of about 20 nm. We assume [13] for Ag, �l = 7.9 × 1013 s−1, ω0 = 5 × 1015 rad s−1 and
ω1 = 1.4 × 1015 rad s−1. Figures 2–4 show the transmission coefficient T as a function of
the reduced frequency (ω/ω0)

2 calculated using this point-dipole model for modes with the
electric field polarized perpendicular to the chain (transverse modes).

Let us first present the case of such a system with only one adsorbed cluster. The
transmitted and reflected functions can be obtained from equations (7), (13) and (14) when
letting d2 go to infinity. Without attenuation, the solid line in figure 2 gives the transmission
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Figure 2. For one single adsorbed cluster, this figure shows the transmission coefficients T (solid
line) without damping, the attenuated transmission T exp(−4αd) (dashed line) and the attenuated
reflectance R exp(−4αd) (dotted–dashed line), as a function of the reduced frequency (ω/ω0)

2, for
d1/d = 1.25.
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Figure 3. For two adsorbed clusters, this figure shows the transmission coefficients T (solid
line) without damping, the attenuated transmission T exp(−4αd) (dashed line) and the attenuated
reflectance R exp(−4αd) (dotted–dashed line), as a function of the reduced frequency (ω/ω0)

2, for
d1/d = 1.2 and d2/d = 1.

coefficient T as a function of (ω/ω0)
2, for d1/d = 1.25. The corresponding reflection

coefficient (not shown) satisfies R = 1 − T . When attenuation is taken into account, we
present in figure 2 the quantities T exp(−4αd) and R exp(−4αd) as dashed and dotted–dashed
lines. The coefficient exp(−4αd) was introduced in order to compare the transmission intensity
one cluster after the resonator to the intensity one cluster before. Indeed, in some frequency
domains far from ω0, the coefficients T or R may exceed the value of one. However, this is not
contradictory with the conservation of the energy since, for instance, the power one cluster after
the resonator remains always smaller than the power one cluster before the resonator. Note that,
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Figure 4. Same as in figure 3, but for
d1/d = 0.7 and d2/d = 1.

without attenuation, one has a zero of transmission in the middle of the band. The quality of the
corresponding dip is approximatively proportional to (d1/d)12. It could therefore become very
high. However, as one wishes this deep to be experimentally observed with the current values
of the attenuation, we have to restrict ourselves to the quality shown in the present figure.

Let us now illustrate the case of the system with two adsorbed clusters. Figure 3 presents
the transmission coefficients T without attenuation (solid line), T exp(−4αd) with attenuation
(dashed line) and R exp(−4αd) with attenuation (dotted–dashed line) as a function of (ω/ω0)

2,
for d1/d = 1.2 and d2/d = 1. As can be seen from equation (13), the zeros of transmission
were fixed by the choice of d2/d = 1. The dips in the transmission coefficient without
attenuation T show a width at half maximum that is of the order predicted by equation (21).
The value of d1/d could have been taken such that the dip would have very high quality; we
chose the present value in order that the dips remain observable when attenuation is taken into
account. The corresponding reflection curve without attenuation (not shown in this figure) is
such that R = 1 − T . Note also that the corresponding reflection peaks with attenuation are
more difficult to detect.

When decreasing d1/d , we present figure 4 for d1/d = 0.7. The peak in the transmission
coefficient without attenuation T shows a width at half maximum of the order predicted by
equation (20). Let us stress that the higher quality of the central peak is in agreement with the
approximate relation given by equation (20). Such a system could then be used in transmission
as a light filter.

The results of the present paper show that the simple structure presented in this brief report
can be a filter for transverse plasmon waves. This enables us to get, in particular, a sharp peak
between two zeros of transmission close to each other or sharp dips between two transmission
ones. Moreover, the above-derived closed-form expressions enable us to find easily the optimal
parameters for the device desired, enabling one to engineer it at will for specific applications.
Let us stress that such results were not obtained [12] for a similar device with continuous
wires and resonators for which only large dips were reported. Sharp peaks have been found
before [12], but only for a more complicated four-lead device, namely a multiplexer.

Let us remark that, without attenuation, the zeros of transmission discussed in this brief
report appear at frequencies corresponding to the eigenvalues of the isolated two-cluster
molecule and the transmission one at the frequency of one single cluster. It is easy to generalize
this for a bigger molecule adsorbed on one wire site. In such a case, the transmission function
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is given by

t = 1

1 − i
2

ω4
1(d1)

ω2
1(d)

g(a,a)

sin(ka)

, (23)

where g(a, a) is a Green’s function element of the isolated molecule; a labels the molecule
cluster to which one wire cluster is bound. This shows that the zeros of transmission of such a
system still appear at the eigenvalue frequencies of the isolated molecule and the transmission
ones at the eigenvalue frequencies of an isolated molecule obtained from the former one without
the one cluster interacting with the wire. Of course, the transmission ones appear in between
the transmission zeros.

This simple nanometric filter device is expected to stimulate further research, especially for
a plasmon system exhibiting much smaller damping as those considered here: like, for example,
continuous metallic wires and resonant slot metallic nanoparticles [17]. In future investigations,
the effects of retardation and radiation damping [18] will have to be taken into account. They
will probably have important effects on the position and the widths of the sharp peaks and dips
reported here. However the possibility of obtaining such structures should remain.

These results can also be generalized to other than plasmon waves. We want to stress that
the very general property for such systems is that, without attenuation, a one of transmission
may be adjusted to become a very high-quality peak by fitting the distances such that one mode
of the isolated resonator lies between two very close modes of the resonator without the particle
interacting with the one-dimensional waveguide.
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